Dimensional formula with SI unit - StudyPCM

StudyPCM

STUDY WITH FUN

Dimensional formula with SI unit

Share This

Read dimensional formula of various physical quantity including their formula, their SI unit and denotation.
I hope, this post will help many students.

Please use Desktop mode or Rotate your device vertically to read comfortably In your MOBILE.
FUNDAMENTAL PHYSICAL QUANTITY
S.I. UNIT
DIMENSIONAL FORMULA
MASS(m)
Kg (Kilogram)
[M]
LENGTH(l)
m (metre)
[L]
TIME(t)
S (second)
[T]
TEMPERATURE(T)
K (kelvin)
[K]
ELECTRIC CURRENT(I)
A (ampere)
[A]
AMOUNT OF SUBSTANCE(n)
mol (mole)
[mol]
LUMINOUS INTENSITY
Cd (candela)
[cd]


DERIVED PHYSICAL QUANTIY
FORMULA
S.I. UNIT
DIMENSIONAL FORMULA




Area(A)
LENGTH*LENGTH
m2
[L2]
Volume(V)
L*L*L
m3
[L3]
Density(ρ, σ)
Mass/Volume
Kg/m3
[ML-3]
Angle(θ)
Arc/Radius
radian
Dimensionless




Distance(x)
LENGTH
m
[L]
Speed or velocity(v)
DISTANCE/TIME
m/s
[LT-1]
Acceleration(a)
VELOCITY/TIME
m/s2
[LT-2]
Force/thrust/tension(F)
MASS*ACCELERATION
N or Kg m/s2
[MLT-2]
Linear momentum(P)
MASS*VELOCITY
Kg m/s
[MLT-1]
Impulse(I)
FORCE*TIME
Ns
[MLT-1]
Pressure(P)
FORCE/AREA
Pa or N/m2
[ML-1T-2]
Frequency(ν)
1/TIME
Hz or PER SECOND
[T-1]




Angular velocity(ω)
ANGLE/TIME
Rad/S
[T-1]
Torqe(τ)
FORCE*LENGTH
Nm
[ML2T-2]
Angular momentum(L)
L mome.*DISTANCE
Kg m2/s
[ML2T-1]
Angular acceleration(α)
Ang. Velocity./TIME
rad/s2
[T-2]
Moment of inertia(I)
mr2
Kg m2
[ML2]




Velocity gradient
VELOCITY/DISTANCE
Per second
[T-1]
Pressure gradient
PRESSURE/DISTANCE
Kg /m2s2
[ML-2T-2]




Work(W,U)
FORCE*DISTANCE
J or Kg m2/s2
[ML2T-2]
Energy(E)
½mv2  , mgh
J (JOULE)
[ML2T-2]
Heat(Q)

J
[ML2T-2]
Power(P)
WORK/TIME, FORCE*VELOCITY
W(Watt),J/S, N m/s2
[ML2T-3]
Spring or force constant(K)
K=F/X
N/m
[MT-2]




Gravitational constant(G)
G=Fr2/m1*m2
N m2 / Kg2
[M-1L3T-2]
Acceleration due to gravity(g)
g=F/m
m/s2
[LT-2]
Gravitational field(I)
I=Gm/r2
N/Kg
[LT-2]
Gravitational potential(V)
-Gm/r
J/Kg
[L2T-2]




Friction(F)

N
[MLT-2]
Coefficient of friction(μ)
F/R
NO UNIT
DIMENSIONLESS
Coefficient of viscosity(η)
F dx/A dv
N s /m2 ,Decapoise
[ML-1T-1]
Reynold number(R)
VρD/η
NO UNIT
DIMENSIONLESS
Pressure(P)
Force/Area
Pa or N/m2
[ML-1T2]
Stress
Force/Area
Pa or N/m2
[ML-1T2]
Strain
Change in configuration/Original  configuration
NO UNIT
DIMENSIONLESS
Modulus of elasticity(E)
Stress/strain
Pa or N/m2
[ML-1T2]
Young’s modulus of elasticity(Y)
FL/A∆L
Pa or N/m2
[ML-1T2]
Bulk’s modulus of elasticity(B)
-PV/∆V
Pa or N/m2
[ML-1T2]
Compressibility(K)
1/B
m2/N
[M-1LT-2]
Shear modulus of elasticity or modulus of rigidity(G)
FL/A∆L
Pa or N/m2
[ML-1T2]
Poisson ratio(σ)
Lateral Strain/Longitudinal Strain
NO UNIT
DIMENSIONLESS
Surface tension(T)
F/L
N/m
[MT-2]
Surface energy()
E/A
J/m2
[MT-2]




Heat(Q)
Cm∆T
J
[ML2T-2]
Coefficient of linear expansion(α)
ΔL/LΔT
K-1
[K-1]
Coefficient of superficial expansion(β)
ΔA/AΔT
K-1
[K-1]
Coefficient of volume expansion(γ)
ΔV/VΔT
K-1
[K-1]
Specific heat capacity(C)
Q/m∆T
J/Kg k
[L2T-2K-1]
Molar specific heat capacity
MOLECULAR WEIGHT* SPECIFIC HEAT CAPACITY
J/mol k
[ML2T-2K-1mol-1]
Latent heat(L)
Q/M
J/Kg
[L2T-2]
Boltzmann constant
ENERGY/TEMPERATURE
J/K
[ML2T-2K-1]
Thermal conductivity(K)
-Q∆X/AT∆T
J/s m k
[MLT-3K-1]




Electric charge(Q,q)
CURRENT*TIME
COLOUMB
[AT]
Coulomb’s constant(K,1/4 π ε0r)
Fr2/q1q2
N m2/C2
[ML3T-4A-2]
Permittivity(ε)
εrε0  , 1/K
C2 / N m2
[M-1L-3T4A2]
Dipole moment(p)
CHARGE* 2 *LENGTH
C m
[LTA]
Linear charge density(λ)
CHARGE/LENGTH
C /m
[L-1TA]
Surface charge density(σ)
CHARGE/AREA
C /m2
[L-2TA]
Volume charge density(ρ)
CHARGE/VOLUME
C /m3
[L-3TA]
Electric field(E)
FORCE/CHARGE
N/C
[MLT-3A-1]
(Due to other charge)
Kq/r
N/C
[MLT-3A-1]
(Due to dipole at axial)
2Kp/ r3
N/C
[MLT-3A-1]
(Due to dipole at equatorial)
Kp/ r3
N/C
[MLT-3A-1]
(Due to dipole at ANY POINT)
Kp√(3 Cos2θ +1)/ r3
N/C
[MLT-3A-1]
(Due to uniformly charged long wire)
2λ/4 π ε0r
N/C
[MLT-3A-1]
(Due to uniformly charged plane sheet)
σ/2 ε0
N/C
[MLT-3A-1]




Area vector(A)
ds
m2
[L2]
Electric flux(ϕ)
E*ds
N m2/C
[ML3T-3A-1]
ELECTRIC POTENTIAL(V)
WORK/CHARGE
V(VOLT) , J/C
[ML2T-3A-1]
(Due to other charge)
Kq/r
V
[ML2T-3A-1]
(Due to dipole at axial)
Kp/ r2
V
[ML2T-3A-1]
(Due to dipole at equatorial)
0
V
[ML2T-3A-1]
(Due to dipole at ANY POINT)
Kp Cosθ/ r2






ELECTRIC FIELD(E)
POTENTIAL/DISTANNCE
V/m
[MLT-3A-1]
POLARISATION(P)
DIPOLE MOMENT/VOLUME
p/V
[L-2TA]
SUSCEPTIBILITY(χ)
POLRISATION/ ε0 *E
NO UNIT
DIMENSIONLESS
POLARIZABILITY(P)
DIPOLE MOMENT/ ε0 *E
m3
[L3]
CAPACITANCE(C)
CHARGE/POTENTIAL
F(FARAD) , C/V
[M-1L-2T4A2]
(PARALLEL PLATE CAPACITOR)
A ε0/D
F
[M-1L-2T4A2]
(ISOLATED SPHERICAL CONDUCTOR)
4 π ε0r
F
[M-1L-2T4A2]
Energy Stored In Capacitors(U)
Q2/2C , CV2/2 , QV/2
J
[ML2T-2]
CHARGE(Q)
CAPACITANCE*POTENTIAL
C
[AT]




CURRENT(I)
Q/T , AneVd
A(Ampere), C/s
[A]
CHARGE(Q)
IT , ALne
C
[AT]
DRIFT VELOCITY(Vd)
Eet/m,
m/s
[LT-1]
ELECTRIC FIELD(E)
J ρ , J/ σ 
N/C
[MLT-3A-1]
CURRENT DENSITY(J)
I/A , σ  E , E/ρ ,neVd
A/m2
[AL-2]
POTENTIAL DIFFERENCE(V)
I*R
V(VOLT) , J/C
[ML2T-3A-1]
RESISTANCE(R)
V/I , ρ l/A
Ω(Ohm)
[ML2T-3A-2]
RESISTIVITY(ρ)
RA/L
Ωm
[ML3T-3A-1]
CONDUCTANCE(G)
1/R
-1,mho ,simen
[M-1L-2T3A2]
CONDUCTIVITY(σ)
1/ ρ
-1m-1
[M-1L-3T3A2]
COOFICIENT OF RESISTANCE(α)
[R2-R1]/[R1(T2-T1)]
K-1
[K-1]
ELECTRICAL ENERGY
I2RT , VIT, V2T/R
J(JOULE)
[ML2T-2]
ELECTRICAL POWER
I2R , VI, V2/R
W(WATT)
[ML2T-3]

  If want more dimension formula of various physical quantities,then comment below..



Read my other interesting blog.

Thanks
Rahul Kumar

For any confusion or information
Write your queries.
Mail us
Iamriamrahulkr13@gmail

1 comment:

Pages